# The Economics of Predation: What Drives Pricing When There Is Learning-by-Doing?

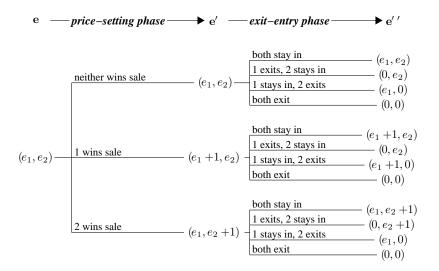
David Besanko Ulrich Doraszelski Yaroslav Kryukov

Kellogg School of Management, Northwestern University Wharton School, University of Pennsylvania Tepper School of Business, Carnegie Mellon University

## Predatory Pricing or Competition for Efficiency?

- Allegations of predation often surface in industries with learning-by-doing:
  - Semiconductor wars in 1970s and 1980s.
  - Japanese color televisions in 1960s and 1970s.
  - Intel vs. AMD in mid/late 2000s.
  - Chinese solar panels in 2012.
- How can we characterize exclusionary behavior when firms compete for a "positive-feedback" advantage?

## Research Questions and Contributions


- When does predation-like behavior arise?
  - Routinely and under plausible conditions (generalize Cabral & Riordan 1994).
  - Coexist with non-predatory equilibria for same parameterization (formalize Edlin 2010).
- What drives pricing?
  - Isolate predatory incentives by decomposing equilibrium pricing condition.
  - Decomposition provides coherent and flexible way to define predatory incentives
- What is the impact of predatory incentives (however defined) on industry structure, conduct, and performance?
  - Less severe conduct restrictions have small impact "on average."
  - More severe conduct restrictions have large impact by eliminating equilibria with predation-like behavior.
  - But they reduce competition for the market.



## Dynamic Pricing Model with Learning-by-Doing

- Markov-perfect-equilibrium framework (Ericson & Pakes 1995).
- State  $e_n = 0$  denotes firm  $n \in \{1, 2\}$  as potential entrant.
- State  $e_n \in \{1, ..., M\}$  indicates cumulative experience of incumbent firm. By winning sale, incumbent firm adds to cumulative experience and lowers production cost through learning-by-doing.
- Within-period timing:
  - Price-setting phase (transitions from state e to state e');
  - Exit-entry phase (transitions from state e' to state e'').

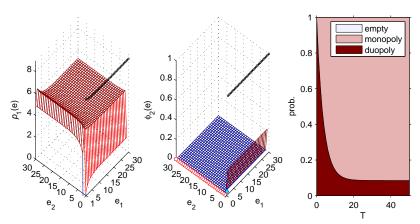
#### Decisions and State-to-State Transitions



## Pricing Decision of Incumbent Firm

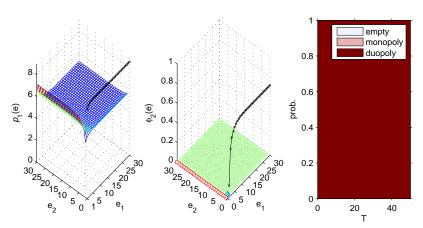
- Value functions: Expected NPV of future cash flows to firm 1...
  - ...in state **e** at beginning of period  $\rightarrow V_1(\mathbf{e})$ ;
  - ... in state e' after pricing decisions but before exit and entry decisions are made  $\rightarrow U_1(\mathbf{e}')$ .
- Bellman equation:

$$\begin{array}{lcl} V_1(\mathbf{e}) & = & \max_{p_1}(p_1-c(e_1))D_1(p_1,p_2(\mathbf{e})) + D_0(p_1,p_2(\mathbf{e}))U_1(\mathbf{e}) \\ & & + D_1(p_1,p_2(\mathbf{e}))U_1(e_1+1,e_2) \\ & & + D_2(p_1,p_2(\mathbf{e}))U_1(e_1,e_2+1). \end{array}$$


Pricing decision:

static profit advantage-building motive 
$$\overbrace{\mathit{mr}_1(p_1,p_2(\mathbf{e}))-c(e_1)}^{\mathsf{static}} + \underbrace{[U_1(e_1+1,e_2)-U_1(\mathbf{e})]}_{\mathsf{dvantage-denying motive}}^{\mathsf{pr}_1(p_1,p_2(\mathbf{e}))} = 0,$$

where  $Y(p_2(e))$  is conditional probability of firm 2 making sale.

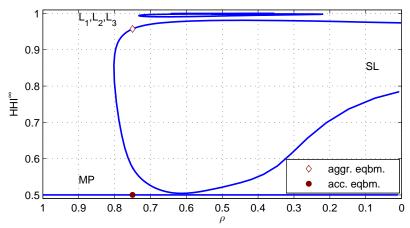



## Aggressive Equilibrium: Predation-Like Behavior



Pricing decision of firm 1, non-operating probability of firm 2, and time path of probability distribution over industry structures.

## Accommodative Equilibrium




Pricing decision of firm 1, non-operating probability of firm 2, and time path of probability distribution over industry structures.

## Competition for and in the Market

|                                                                               | aggressive<br>equilibrium | accommod.<br>equilibrium |
|-------------------------------------------------------------------------------|---------------------------|--------------------------|
| structure:<br>expected long-run Herfindahl index HHI <sup>∞</sup><br>conduct: | 0.96                      | 0.50                     |
| expected long-run average price $\overline{p}^{\infty}$ performance:          | 8.26                      | 5.24                     |
| expected long-run consumer surplus $CS^{\infty}$                              | 1.99                      | 5.46                     |
| expected long-run total surplus $TS^{\infty}$                                 | 6.09                      | 7.44                     |
| discounted consumer surplus CS <sup>NPV</sup>                                 | 104.17                    | 109.07                   |
| discounted total surplus TS <sup>NPV</sup>                                    | 110.33                    | 121.14                   |

## Predation-Like Behavior Arises Routinely



Equilibrium correspondence.

#### Sacrifice Standard

- Legal standard of predation revolves around sacrifice of current profit in exchange for future profit.
- Determine whether derivative of suitably defined profit function at actual price is positive. "In principle this profit function should incorporate everything except effects on competition..." (Edlin & Farrell 2004).
- Profit function = everything-except-for-effects-on-competition profit function + remainder:

$$\Pi_1(\textit{p}_1) = \Pi_1^{\textit{EEEC}}(\textit{p}_1) + \Omega_1(\textit{p}_1).$$

In equilibrium:

$$\frac{\partial \Pi_1^{\textit{EEEC}}(\textit{p}_1(e))}{\partial \textit{p}_1} > 0 \Leftrightarrow \frac{\partial \Omega_1(\textit{p}_1(e))}{\partial (-\textit{p}_1)} > 0.$$

## Isolating Predatory Incentives

 Short-run profit. "... but in practice sacrifice tests often use short-run data, and we will often follow the conventional shorthand of calling it short-run profit" (Edlin & Farrell 2004):

$$\Pi_1^{EEEC}(p_1) = (p_1 - c(e_1)) D_1(p_1, p_2(\mathbf{e}).$$

<u>Definition:</u> Predatory incentives are the advantage-building and advantage-denying motives

$$[U_1(e_1+1,e_2)-U_1(\mathbf{e})]+Y(p_2(\mathbf{e}))[U_1(\mathbf{e})-U_1(e_1,e_2+1)].$$

 Dynamic competitive vacuum. An action is predatory to the extent that it weakens the rival (Farrell & Katz 2005):

$$\Pi_1^{EEEC}(p_1) = (p_1 - c(e_1)) D_1(p_1, p_2(\mathbf{e}) + U_1(\mathbf{e}) + D_1(p_1, p_2(\mathbf{e})) [U_1(e_1 + 1, e_2) - U_1(\mathbf{e})].$$

<u>Definition:</u> Predatory incentives are the advantage-denying motive

$$[U_1(\mathbf{e}) - U_1(e_1, e_2 + 1)].$$



## **Isolating Predatory Incentives**

- Rival exit I. Economic definitions of predation focus on impact of price cut on rival exit (Ordover & Willig 1981, Cabral & Riordan 1997).
  - Advantage-building/exit motive  $\Gamma_1^2(\mathbf{e})$ : If firm wins sale and moves down its learning curve, then firm increases rival's exit probability.
  - Advantage-denying/exit motive  $\Theta_1^2(\mathbf{e})$ : If firm wins sale and moves down its learning curve, then firm prevents rival's exit probability from decreasing.

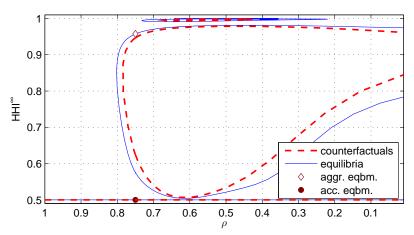
<u>Definition:</u> Predatory incentives are the advantage-building/exit and advantage-denying/exit motives

$$\Gamma_1^2(\mathbf{e}) + Y(p_2(\mathbf{e}))\Theta_1^2(\mathbf{e}).$$

 Rival exit II. Truly exclusionary effect is the one aimed at inducing exit by preventing rival from winning sale.
<u>Definition:</u> Predatory incentives are the advantage-denying/exit motive

$$\Theta_1^2(\mathbf{e})$$
.

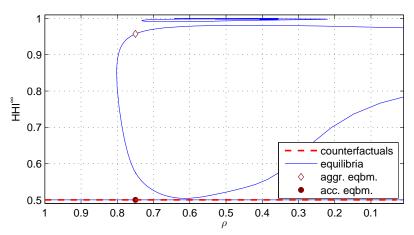



#### Conduct Restrictions

- Definitions of predatory incentives correspond to conduct restrictions of decreasing severity.
- Impose constraint  $\Xi(p_1, p_2(\mathbf{e}), \mathbf{e}) = 0$  on firm's profit-maximization problem:

$$\overbrace{\mathit{mr}_1(\rho_1, \rho_2(\mathbf{e})) - c(e_1)}^{\mathsf{static profit}} + \underbrace{\left[\sum_{k=1}^5 \Gamma_1^k(\mathbf{e})\right]}_{\mathsf{decomposed AD motives}}^{\mathsf{5}} + \mathsf{Y}(\rho_2(\mathbf{e})) \underbrace{\left[\sum_{k=1}^4 \Theta_1^k(\mathbf{e})\right]}_{\mathsf{decomposed AD motives}}^{\mathsf{6}} = 0,$$

with predatory incentives "switched off."


# Less Severe Conduct Restrictions: Small Impact "on Average"



Equilibrium and counterfactual correspondence for REI predatory incentives.



# More Severe Conduct Restrictions: Large Impact by Eliminating Equilibria



Equilibrium and counterfactual correspondence for DCV predatory incentives.



## What Happens After Conduct Restriction is Enforced?

- Compare counterfactuals to equilibria over wide range of parameterizations.
- Difficulty: Multiple counterfactuals.
- Use homotopy method where possible to connect equilibrium to nearby counterfactual and assume random selection where necessary.

## Impact of Conduct Restrictions

|                         |        |        | definition |       |       |       |
|-------------------------|--------|--------|------------|-------|-------|-------|
|                         | avg.   |        | SRP        | DCV   | REI   | REII  |
| HHI <sup>∞</sup>        | 0.70   | change | -0.11      | -0.11 | -0.02 | -0.02 |
|                         |        | up     | 6%         | 2%    | 10%   | 11%   |
|                         |        | down   | 40%        | 40%   | 21%   | 19%   |
| $\overline{p}^{\infty}$ | 6.71   | change | -1.17      | -1.23 | -0.23 | -0.18 |
|                         |        | up     | 6%         | 2%    | 12%   | 13%   |
|                         |        | down   | 39%        | 40%   | 22%   | 20%   |
| CS <sup>∞</sup>         | 3.97   | change | 1.27       | 1.33  | 0.24  | 0.20  |
|                         |        | up     | 41%        | 41%   | 28%   | 26%   |
|                         |        | down   | 6%         | 4%    | 14%   | 15%   |
| TS <sup>∞</sup>         | 7.73   | change | 0.32       | 0.30  | 0.05  | 0.05  |
|                         |        | up     | 40%        | 38%   | 9%    | 10%   |
|                         |        | down   | 0%         | 0%    | 1%    | 0%    |
| CS <sup>NPV</sup>       | 119.88 | change | -64.94     | -1.80 | -1.38 | -0.09 |
|                         |        | up     | 0%         | 14%   | 0%    | 5%    |
|                         |        | down   | 95%        | 60%   | 40%   | 7%    |
| TS <sup>NPV</sup>       | 139.16 | change | -12.72     | 2.19  | 0.32  | 0.40  |
|                         |        | up     | 1%         | 35%   | 8%    | 9%    |
|                         |        | down   | 93%        | 0%    | 4%    | _2%   |

## Conclusions and Policy Implications

- Predation-like behavior arises routinely and under plausible conditions in dynamic pricing models.
- Aggressive equilibria with predation-like behavior typically coexist with accommodative equilibria: Predatory pricing can arise "if business folk think so" (Edlin 2010).
- Conduct restrictions may eliminate equilibria with predation-like behavior, but they reduce competition for the market.
  - Judge Breyer's "bird-in-hand:" Price of making future consumers better off is making current consumers worse off.
- DCV and REII conduct restrictions are closest to unambiguously beneficial.
  - Exclusion of opportunity may be sensible dividing line between predatory pricing and competition for efficiency.
- Defining predatory pricing is hard, but we can usefully isolate and measure predatory incentives by decomposing equilibrium pricing condition

